
VISHAY.

Vishay Roederstein

DC Film Capacitor MKT Axial Type

Dimensions in mm

LEAD DIAMETER d (mm)	D (mm)
0.6	≤ 5.0
0.7	> 5.0 ≤ 7.0
0.8	> 7.0 < 16.5
1.0	≥ 16.5

MAIN APPLICATIONS

Blocking, bypassing, filtering, timing, coupling and decoupling, interference suppression in low voltage applications

REFERENCE STANDARDS

IEC 60384-2

MARKING

C-value; tolerance; rated voltage; manufacturer's type; code for dielectric material; manufacturer location; manufacturer's logo; year and week

DIELECTRIC

Polyester film

ELECTRODES

Metallized

CONSTRUCTION

Mono and internal series construction

RATED (DC) VOLTAGE

63 V, 100 V, 250 V, 400 V, 630 V, 1000 V

RATED (AC) VOLTAGE

40 V, 63 V, 160 V, 200 V, 220 V

FEATURES

Supplied loose in box, taped on ammopack or reel RoHS compliant

ENCAPSULATION

Plastic-wrapped, epoxy resin sealed, flame retardant

CLIMATIC TESTING CLASS ACC. TO IEC 60068-1 55/100/56

30/100/00

CAPACITANCE RANGE (E12 SERIES)

470 pF to 22 μ F

CAPACITANCE TOLERANCE

± 20 %, ± 10 %, ± 5 %

LEADS

Tinned wire

MAXIMUM APPLICATION TEMPERATURE

100 °C

PULL TEST ON LEADS

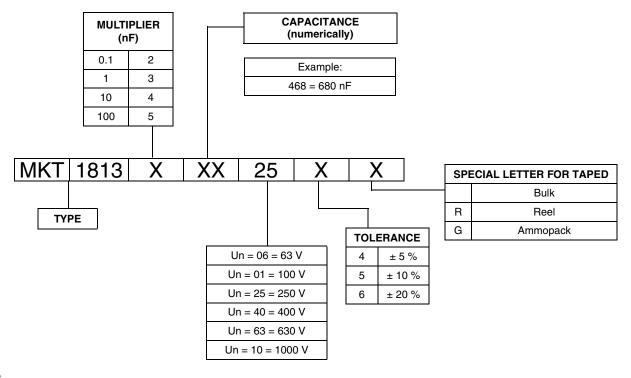
Minimum 20 N in direction of leads according to IEC 60068-2-21

BENT TEST ON LEADS

2 bends trough 90° combined with 10 N tensile strength

RELIABILITY

Operational life > 300 000 h (40 $^{\circ}$ C/0.5 U_R) Failure rate < 2 FIT (40 $^{\circ}$ C/0.5 U_R)


DETAIL SPECIFICATION

For more detailed data and test requirements contact: dc-film@vishay.com

DC Film Capacitor MKT Axial Type

COMPOSITION OF CATALOG NUMBER

Note

For detailed tape specifications refer to "Packaging Information" www.vishay.com/doc?28139 or end of catalog

SPECIFIC REFERENCE DATA

	DESCI	RIPTION		VALUE		
Tangent of loss ang	le:		at 1 kHz	at 10 kHz	at 100 kHz	
C = 0.1 μF			80 x 10 ⁻⁴	150 x 10 ⁻⁴	250 x 10 ⁻⁴	
$0.1 \ \mu F \le C = 1.0 \ \mu F$:			80 x 10 ⁻⁴	150 x 10 ⁻⁴	-
$C \geq 1.0 \; \mu F$				100 x 10 ⁻⁴	-	-
Capacitor length			Maximum pulse rise	e time (dU/dt) _R [V/μs]		
(mm)	63 Vdc	100 Vdc	250 Vdc	400 Vdc	630 Vdc	1000 Vdc
11	12	18	32	56	84	-
14	11	13	22	37	66	175
19	7	8	13	21	33	65
26.5	4	5	8	13	19	34
31.5	3	4	6	10	15	25
41.5	2	3	5	7	10	17
	If the maximum p	ulse voltage is less t	han the rated voltage	e higher dU/dt values	can be permitted.	
R between leads, for	or $C \le 0.33 \mu F$ and	$U_R \le 100 \text{ V}$			> 15 0	00 MΩ
R between leads, for	or C ≤ 0.33 μF and	U _R > 100 V			> 30 000 MΩ	
RC between leads,	> 5000 s					
RC between leads,	> 10 000 s					
R between leads ar	nd case, 100 V; (foi	I method)			> 30 0	00 MΩ
Withstanding (DC)	voltage (cut off cur	rent 10 mA); rise time	e 100 V/s		1.6 x U _F	Rdc, 1 min
Maximum application	on temperature				100	O °C

Document Number: 26013 Revision: 08-Dec-08

18

Vishay Roederstein

CAPACITANCE	CAPACITANCE CODE	COI 63	TAGE DE 06 Vdc/ Vac	100	TAGE DE 01 Vdc/ Vac	COE 250	TAGE DE 25 Vdc/ Vac	COE 400	TAGE DE 40 Vdc/ Vac	CODE 630	TAGE E 63 ⁽¹⁾ Vdc/ Vac	1000	TAGE E 10 ⁽¹⁾ Vdc/ Vac
		D	L	D	L	D	L	D	L	D	L	D	L
470 pF	147	-	-	-	-	-	-	-	-	5.0	11.0	-	-
680 pF	168	-	-	-	-	-	-	-	-	5.0	11.0	-	-
1000 pF	210	-	-	-	-	-	-	-	-	5.0	11.0	5.5	14.0
1500 pF	215	-	-	-	-	-	-	-	-	5.0	11.0	6.0	14.0
2200 pF	222	-	-	-	-	-	-	-	-	5.0	11.0	6.0	14.0
3300 pF	233	-	-	-	-	-	-	-	-	5.0	11.0	7.0	14.0
4700 pF	247	-	-	-	-	-	-	-	-	5.0	11.0	6.0	19.0
6800 pF	268	-	-	-	-	-	-	5.0	11.0	6.0	14.0	6.0	19.0
0.01 μF	310	-	-	-	-	-	-	5.0	11.0	6.0	14.0	6.5	19.0
0.015 μF	315	-	-	-	-	5.0	11.0	6.0	14.0	6.5	14.0	7.5	19.0
0.022 μF	322	-	-	-	-	5.0	11.0	6.0	14.0	7.5	14.0	9.0	19.0
0.033 μF	333	-	-	-	-	5.0	11.0	6.0	14.0	6.5	19.0	10.5	19.0
0.047 μF	347	-	-	-	-	6.0	14.0	7.0	14.0	7.5	19.0	12.0	19.0
0.068 μF	368	-	-	5.0	11.0	6.0	14.0	8.0	14.0	8.5	19.0	11.0	26.5
0.4	440	-	-	5.0	11.0	6.0	14.0	7.0	19.0	10.5	19.0	13.0	26.5
0.1 μF	410	-	-	-	-	-	-	-	-	9.5	19.0 ⁽²⁾	-	-
0.15 μF	415	5.0	11.0	5.5	11.0	7.0	14.0	8.5	19.0	10.0	26.5	13.5	31.5
2.22 5	400	5.0	11.0	6.0	14.0	7.0	19.0	8.0	26.5	11.5	26.5	16.0	31.5
0.22 μF	422	-	-	-	-	-	-	8.0	19.0 ⁽²⁾	-	-	-	-
		6.0	14.0	6.0	19.0	8.0	19.0	9.5	26.5	13.5	26.5	16.0	41.5
0.33 μF	433	-	-	-	-	-	-	9.5	19.0 ⁽²⁾	-	-	-	-
		7.0	14.0	6.5	19.0	9.0	19.0	11.0	26.5	14.5	31.5	19.0	41.5
0.47 μF	447	-	-	-	-	-	-	-	-	14.0	26.5 (2)	-	-
		6.5	19.0	7.0	19.0	8.5	26.5	11.5	31.5	14.5	41.5	_	_
0.68 μF	468	_	-	_	-	9.0	19.0 ⁽²⁾	_	-	_	-	_	_
1.0 μF	510	7.5	19.0	8.5	19.0	10.0	26.5	13.5	31.5	16.5	41.5	-	_
		8.5	19.0	8.0	26.5	11.0	31.5	14.0	41.5	-	-	-	_
1.5 μF	515	-	_	8.0	19.0 ⁽²⁾	-	-	13.0	31.5 (2)	_	_	-	_
		8.5	26.5	9.5	26.5	13.0	31.5	16.5	41.5	_	_	-	_
2.2 μF	522	7.5	19.0 ⁽²⁾	9.5	19.0 ⁽²⁾	-	-	-			_	_	_
		10.0	26.5	11.5	26.5	15.5	31.5						
3.3 μF	533	8.5	19.0 ⁽²⁾	11.5	-	14.0	26.5 ⁽²⁾		-		_		-
				10.0				-		-	-		-
4.7 μF	547	11.5	26.5	12.0	31.5	15.5	41.5	-	-	-	-	-	-
0.0 × F	500	-	-	-	-	14.5	31.5 (2)	-	-	-	-	-	-
6.8 μF	568	12.0	31.5	14.0	31.5	17.5	41.5	-	-	-	-	-	-
10.0 μF	610	14.5	31.5	16.5	31.5	21.0	41.5	-	-	-	-	-	-
	0.1-	-		13.5	31.5 (2)	-	-	-	-	-		-	-
15.0 μF	615	18.0	31.5	20.5	31.5	-	-	-	-	-	-	-	-
22.0 μF	622	17.5	41.5	-	-	-	-	-	-	-	-	-	-

Notes

[•] Pitch = L + 3.5

⁽¹⁾ Not suitable for mains applications

⁽²⁾ For the smaller size please add "-M" at the end of the type designation (e.g. MKT 1813-510/255-M)

DC Film Capacitor MKT Axial Type

RECOMMENDED PACKAGING

PACKAGING CODE	TYPE OF PACKAGING	REEL DIAMETER (mm)	ORDERING CODE EXAMPLES	
G	Ammo	-	MKT 1813-422-014-G	Х
R	Reel	350	MKT 1813-422-014-R	Х
-	Bulk	-	MKT 1813-422-014	Х

Note

• Attention: Capacitors with L > 31.5 mm only as bulk available

EXAMPLE OF ORDERING CODE

TYPE	CAPACITANCE CODE	VOLTAGE CODE	TOLERANCE CODE (1)	PACKAGING CODE
MKT 1813	410	06	5	G

Note

(1) Tolerance Codes: 4 = 5 % (J); 5 = 10 % (K); 6 = 20 % (M)

MOUNTING

Normal Use

The capacitors are designed for mounting on printed-circuit boards. The capacitors packed in bandoliers are designed for mounting in printed-circuit boards by means of automatic insertion machines.

For detailed tape specifications refer to Packaging information: www.vishav.com/doc?28139 or end of catalog.

Specific Method of Mounting to Withstand Vibration and Shock

In order to withstand vibration and shock tests, it must be ensured that the capacitor body is in good contact with the printed-circuit board:

- For $L \le 19$ mm capacitors shall be mechanically fixed by the leads
- For larger pitches the capacitors shall be mounted in the same way and the body clamped
- · The maximum diameter and length of the capacitors are specified in the dimensions table
- · Eccentricity as shown in the drawing below

Space Requirements On Printed-Circuit Board

The maximum length and width of film capacitors is shown in the drawing:

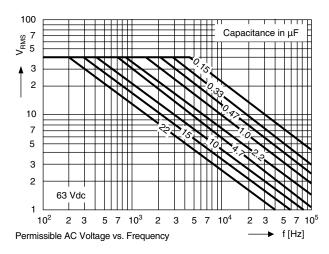
- Eccentricity as in drawing. The maximum eccentricity is smaller than or equal to the lead diameter of the product concerned.
- Product height with seating plane as given by "IEC 60717" as reference: $h_{max.} \le h + 0.4 \text{ mm}$ or $h_{max.} \le h' + 0.4 \text{ mm}$

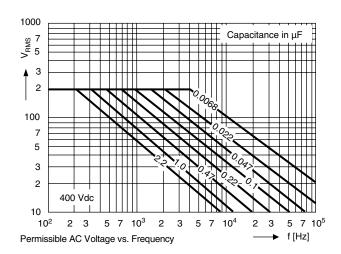
Storage Temperature

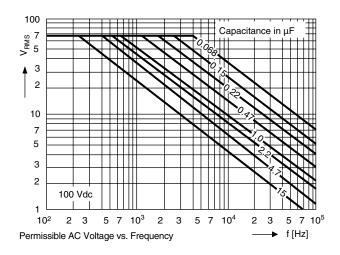
• Storage temperature: T_{stg} = - 25 °C to + 40 °C with RH maximum 80 % without condensation

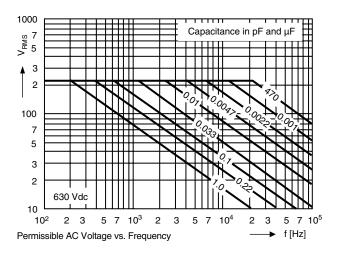
Ratings and Characteristics Reference Conditions

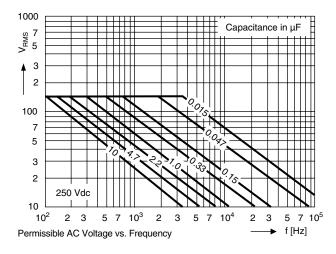
Unless otherwise specified, all electrical values apply to an ambient temperature of 23 ± 1 °C, an atmospheric pressure of 86 kPa to 106 kPa and a relative humidity of 50 ± 2 %.

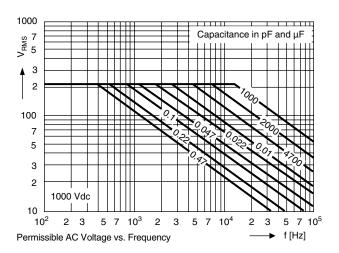

For reference testing, a conditioning period shall be applied over $96 \pm 4 \text{ h}$ by heating the products in a circulating air oven at the rated temperature and a relative humidity not exceeding 20 %.

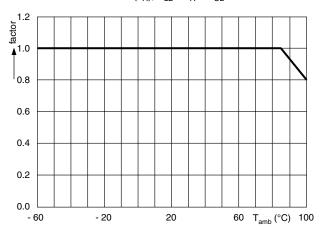


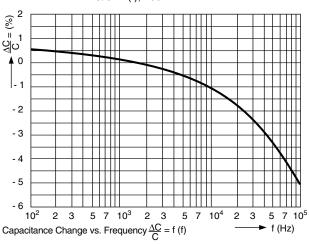


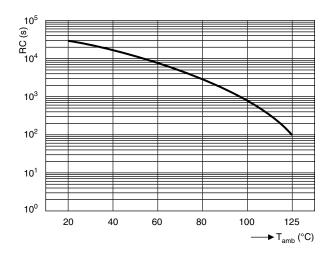

Vishay Roederstein

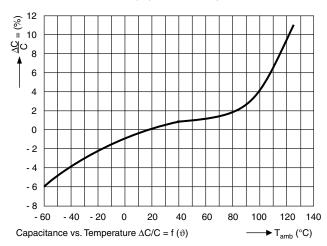

CHARACTERISTICS

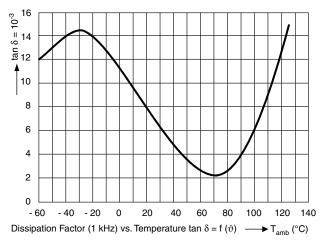


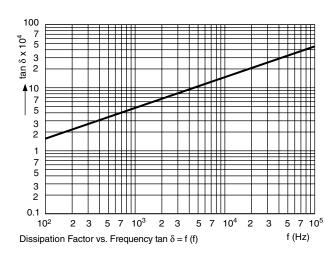



DC Film Capacitor MKT Axial Type

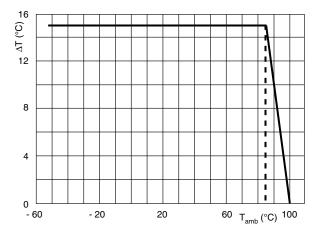

Nominal voltage (AC and DC) as a function of temperature $U = f(T_A), \ T_{LL} \le T_A \le T_{UL}$


Capacitance as function of frequency $\Delta C/C = f(f)$, 100 Hz $\leq f \leq$ 1 MHz


Insulation resistance as a function of temperature $R_{is} = f(T_A), \ T_{LL} \leq T_A \leq T_{UL}$


Capacitance as a function of temperature $\Delta C/C = f(T_A),\, T_{LL} \leq T_A \leq T_{UL}$

Dissipation factor as function of temperature $\Delta tan \; \delta / tan \; \delta = f(T_A), \; T_{LL} \leq T_A \leq T_{UL}$


Dissipation factor as a function of frequency $\Delta \tan \delta / \tan \delta = f(f)$, 100 Hz $\leq f \leq 1$ MHz_L

Vishay Roederstein

Maximum allowed component temperature rise (ΔT) as a function of the ambient temperature (T_{amb})

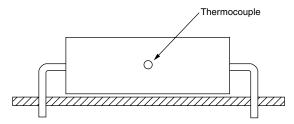
HEAT CONDUCTIVITY (G) AS A FUNCTION OF (ORIGINAL) PITCH AND CAPACITOR BODY THICKNESS IN mW/°C

D _{max} .	HEAT CONDUCTIVITY (mW/°C)					
(mm)	L = 11 mm	L = 14 mm	L = 19 mm	L = 26.5 mm	L = 31.5 mm	L = 41.5 mm
5.0	2	-	-	-	-	-
5.5	2	3	-	-	-	-
6.0	-	3	4	-	-	-
6.5	-	3	5	-	-	-
7.0	-	4	5	-	-	-
7.5	-	-	6	-	-	-
8.0	-	4	-	8	-	-
8.5	-	-	6	9	-	-
9.0	-	-	7	-	-	-
9.5	-	-	-	10	-	-
10.0	-	-	-	11	-	-
10.5	-	-	8	-	-	-
11.0	-	-	-	12	14	-
11.5	-	-	-	13	15	-
12.0	-	-	9	-	16	-
12.5	-	-	-	-	-	-
13.0	-	-	-	14	17	-
13.5	-	-	-	15	18	-
14.0	-	-	-	16	19	-
14.5	-	-	-	-	19	-
15.0	-	-	-	-	-	-
15.5	-	-	-	-	21	-
16.0	-	-	-	-	-	29
16.5	-	-	-	-	22	30
17.0	-	-	-	-	-	-
17.5	-	-	-	-	-	31
18.0	-	-	-	-	24	-
18.5	-	-	-	-	-	-
19.0	-	-	-	-	-	34
20.0	-	-	-	-	-	-
20.5	-	-	-	-	28	-
21.0	-	-	-	-	-	38

DC Film Capacitor MKT Axial Type

POWER DISSIPATION AND MAXIMUM COMPONENT TEMPERATURE RISE

The power dissipation must be limited in order not to exceed the maximum allowed component temperature rise as a function of the free ambient temperature.


The power dissipation can be calculated according type detail specification "HQN-384-01/101: Technical Information Film Capacitors".

The component temperature rise (ΔT) can be measured (see section "Measuring the component temperature" for more details) or calculated by $\Delta T = P/G$:

- ΔT = Component temperature rise (°C)
- P = Power dissipation of the component (mW)
- G = Heat conductivity of the component (mW/°C)

MEASURING THE COMPONENT TEMPERATURE

A thermocouple must be attached to the capacitor body as in:

The temperature is measured in unloaded (T_{amb}) and maximum loaded condition (T_C).

The temperature rise is given by $\Delta T = T_C - T_{amb}$.

To avoid radiation or convection, the capacitor should be tested in a wind-free box.

APPLICATION NOTE AND LIMITING CONDITIONS

These capacitors are not suitable for mains applications as across-the-line capacitors without additional protection, as described hereunder. These mains applications are strictly regulated in safety standards and therefore electromagnetic interference suppression capacitors conforming the standards must be used.

To select the capacitor for a certain application, the following conditions must be checked:

- 1. The peak voltage (U_P) shall not be greater than the rated DC voltage (U_{Rdc})
- 2. The peak-to-peak voltage (U_{P-P}) shall not be greater than $2\sqrt{2}$ x U_{Rac} to avoid the ionisation inception level
- The voltage peak slope (dU/dt) shall not exceed the rated voltage pulse slope in an RC-circuit at rated voltage and without ringing. If the pulse voltage is lower than the rated DC voltage, the rated voltage pulse slope may be multiplied by U_{Rdc} and divided by the applied voltage.

For all other pulses following equation must be fulfilled:

$$2 \times \int\limits_{0}^{1} \!\! \left(\frac{dU}{dt} \right)^{2} \times dt < U_{Rdc} \times \left(\frac{dU}{dt} \right)_{rated}$$

T is the pulse duration

The rated voltage pulse slope is valid for ambient temperatures up to 85 °C. For higher temperatures a derating factor of 3 % per K shall be applied.

4. The maximum component surface temperature rise must be lower than the limits (see figure max. allowed component temperature rise).

Vishay Roederstein

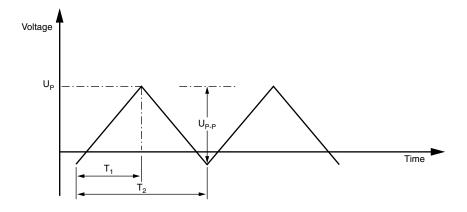
- Since in circuits used at voltages over 280 V peak-to-peak the risk for an intrinsically active flammability after a capacitor breakdown (short circuit) increases, it is recommended that the power to the component is limited to 100 times the values mentioned in the table: "Heat conductivity"
- 6. When using these capacitors as across-the-line capacitor in the input filter for mains applications or as series connected with an impedance to the mains the applicant must guarantee that the following conditions are fulfilled in any case (spikes and surge voltages from the mains included).

Voltage Conditions for 6 Above

ALLOWED VOLTAGES	T _{amb} ≤ 85 °C	85 °C < T _{amb} ≤ 100 °C
Maximum continuous RMS voltage	U _{Rac}	0.8 x U _{Rac}
Maximum temperature RMS-overvoltage (< 24 h)	1.25 x U _{Rac}	U _{Rac}
Maximum peak voltage (V _{O-P}) (< 2 s)	1.6 x U _{Rdc}	1.3 x U _{Rdc}

EXAMPLE

C = 3300 nF - 100 V used for the voltage signal shown in next figure.


 $U_{P-P} = 80 \text{ V}$; $U_P = 70 \text{ V}$; $T_1 = 0.5 \text{ ms}$; $T_2 = 1 \text{ ms}$

The ambient temperature is 35 °C

Checking conditions:

- 1. The peak voltage $U_P = 70 \text{ V}$ is lower than 100 Vdc
- 2. The peak-to-peak voltage 80 V is lower than $2\sqrt{2}$ x 63 Vac = 178 U_{P-P}
- 3. The voltage pulse slope (dU/dt) = 80 V/500 μ s = 0.16 V/ μ s This is lower than 8 V/ μ s (see specific reference data for each version)
- 4. The dissipated power is 60 mW as calculated with fourier terms
 The temperature rise for W_{max.} = 11.5 mm and pitch = 26.5 mm will be 60 mW/13 mW/°C = 4.6 °C
 This is lower than 15 °C temperature rise at 35 °C, according figure max. allowed component temperature rise
- 5. Not applicable
- 6. Not applicable

Voltage Signal

MKT 1813

Vishay Roederstein

DC Film Capacitor MKT Axial Type

INSPECTION REQUIREMENTS

General Notes:

Sub-clause numbers of tests and performance requirements refer to the "Sectional Specification, Publication IEC 60384-2 and Specific Reference Data".

Group C Inspection Requirements

SUB-C	LAUSE NUMBER AND TEST	CONDITIONS	PERFORMANCE REQUIREMENTS
	ROUP C1A PART OF SAMPLE B-GROUP C1		
4.1 4.3.1	Dimensions (detail) Initial measurements	Capacitance	As specified in Chapters "General data" of this specification
		Tangent of loss angle: For C ≤ 470 nF at 100 kHz or for C > 470 nF at 10 kHz	
4.3	Robustness of terminations	Tensile: Load 10 N; 10 s Bending: Load 5 N; 4 x 90°	No visible damage
4.4	Resistance to soldering heat	Method: 1A Solder bath: 280 °C ± 5 °C Duration: 10 s	
4.14	Component solvent resistance	Isopropylalcohol at room temperature Method: 2 Immersion time: 5 ± 0.5 min Recovery time: Min. 1 h, max. 2 h	
4.4.2	Final measurements	Visual examination	No visible damage Legible marking
		Capacitance	$ \Delta C/C \le 2$ % of the value measured initially
		Tangent of loss angle	Increase of $\tan \delta$ ≤ 0.005 for: $C \leq 100$ nF or ≤ 0.010 for:
			100 nF < C ≤ 220 nF or ≤ 0.015 for: 220 nF < C ≤ 470 nF and ≤ 0.003 for:
			C > 470 nF Compared to values measured in 4.3.1
	ROUP C1B PART OF SAMPLE B-GROUP C1		Compared to values measured in 4.6.1
4.6.1	Initial measurements	Capacitance Tangent of loss angle: For C ≤ 470 nF at 100 kHz or for C > 470 nF at 10 kHz	
4.6	Rapid change of temperature	$\theta A = -55 ^{\circ}C$ $\theta B = +100 ^{\circ}C$ 5 cycles	
		Duration t = 30 min Visual examination	No visible damage
4.7	Vibration	Mounting: See section "Mounting" of this specification Procedure B4 Frequency range: 10 Hz to 55 Hz	
		Amplitude: 0.75 mm or Acceleration 98 m/s ²	
		(whichever is less severe) Total duration 6 h	

Vishay Roederstein

SUB-CL	AUSE NUMBER AND TEST	CONDITIONS	PERFORMANCE REQUIREMENTS
4.9	Shock	Mounting: See section "Mounting" of this specification Pulse shape: Half sine Acceleration: 490 m/s² Duration of pulse: 11 ms	
4.9.3	Final measurements	Visual examination	No visible damage
		Capacitance	$ \Delta C/C \le 3$ % of the value measured in 4.6.1
		Tangent of loss angle	Increase of $\tan \delta$ ≤ 0.005 for: $C \leq 100$ nF or ≤ 0.010 for: 100 nF $< C \leq 220$ nF or ≤ 0.015 for: 220 nF $< C \leq 470$ nF and ≤ 0.003 for: C > 470 nF Compared to values measured in 4.6.1
		Insulation resistance	As specified in section "Insulation Resistance" of this specification
	ROUP C1 COMBINED SAMPLE CIMENS OF SUB-GROUPS ID C1B		
4.10	Climatic sequence		
4.10.2	Dry heat	Temperature: + 100 °C Duration: 16 h	
4.10.3	Damp heat cyclic Test Db, first cycle		
4.10.4	Cold	Temperature: - 55 °C Duration: 2 h	
4.10.6	Damp heat cyclic Test Db, remaining cycles		
4.10.6.2	Final measurements	Voltage proof = U _{Rdc} for 1 min within 15 min after removal from testchamber	No breakdown of flash-over
		Visual examination	No visible damage Legible marking
		Capacitance	$ \Delta C/C \le 5$ % of the value measured in 4.4.2 or 4.9.3
		Tangent of loss angle	Increase of $\tan \delta$ ≤ 0.007 for: $C \leq 100$ nF or ≤ 0.010 for: 100 nF $< C \leq 220$ nF or ≤ 0.015 for: 220 nF $< C \leq 470$ nF and ≤ 0.005 for: C > 470 nF Compared to values measured in 4.3.1 or $4.6.1$
		Insulation resistance	≥ 50 % of values specified in section
SUR-CE	ROUP C2		"Insulation resistance" of this specification
4.11	Damp heat steady state	56 days, 40 °C, 90 % to 95 % RH	
4.11.1	Initial measurements	Capacitance	
		Tangent of loss angle at 1 kHz	

DC Film Capacitor MKT Axial Type

SUB-CLAUSE NUMBER AND TEST	CONDITIONS	PERFORMANCE REQUIREMENTS
4.11.3 Final measurements	Voltage proof = U _{Rdc} for 1 min within 15 min after removal from testchamber	No breakdown of flash-over
	Visual examination	No visible damage Legible marking
	Capacitance	$\left \Delta C/C\right \leq 5$ % of the value measured in 4.11.1.
	Tangent of loss angle	Increase of tan $\delta \leq 0.005$ Compared to values measured in 4.11.1
	Insulation resistance	\geq 50 % of values specified in section "Insulation resistance" of this specification
SUB-GROUP C3		
4.12 Endurance	Duration: 2000 h 1.25 x U _{Rdc} at 85 °C 1.0 x U _{Rdc} at 100 °C	
4.12.1 Initial measurements	Capacitance Tangent of loss angle: For C ≤ 470 nF at 100 kHz or for C > 470 nF at 10 kHz	
4.12.5 Final measurements	Visual examination	No visible damage Legible marking
	Capacitance	$\left \Delta C/C\right \leq 5$ % compared to values measured in 4.12.1
	Tangent of loss angle	Increase of $\tan \delta$ ≤ 0.005 for: $C \leq 100$ nF or ≤ 0.010 for: 100 nF < $C \leq 220$ nF or ≤ 0.015 for: 220 nF < $C \leq 470$ nF and ≤ 0.003 for: C > 470 nF Compared to values measured in 4.12.1
	Insulation resistance	\geq 50 % of values specified in section "Insulation resistance" of this specification
SUB-GROUP C4		
4.13 Charge and discharge	10 000 cycles Charged to U_{Rdc} Discharge resistance: $R = \frac{U_R}{C \times 2.5 \times (dU/dt)_R}$	
4.13.1 Initial measurements	Capacitance Tangent of loss angle: For C ≤ 470 nF at 100 kHz or for C > 470 nF at 10 kHz	
4.13.3 Final measurements	Capacitance	$\left \Delta C/C\right \leq 3$ % compared to values measured in 4.13.1
	Tangent of loss angle	Increase of $\tan \delta$ ≤ 0.005 for: $C \leq 100$ nF or ≤ 0.010 for: 100 nF $< C \leq 220$ nF or ≤ 0.015 for: 220 nF $< C \leq 470$ nF and ≤ 0.003 for: C > 470 nF Compared to values measured in 4.13.1
	Insulation resistance	\geq 50 % of values specified in section "Insulation resistance" of this specification

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk and agree to fully indemnify and hold Vishay and its distributors harmless from and against any and all claims, liabilities, expenses and damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vishay or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

www.vishay.com Revision: 11-Mar-11